New plasma escape mechanism could protect fusion vessels from excessive heat

June 25, 2024

The intense heat generated by a fusing plasma in a commercial-scale reactor may not be as damaging to the vessel’s innards as once thought, according to researchers at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), Oak Ridge National Laboratory and the ITER organization (ITER).

“This discovery fundamentally changes how we think about the way heat and particles travel between two critically important regions at the edge of a plasma during fusion,” said PPPL Managing Principal Research Physicist Choongseok Chang, who led the team of researchers behind the discovery. A new paper detailing their work was recently published in the journal Nuclear Fusion, following previous publications on the subject. 

Past research based on physics and experimental data from present-day tokamaks suggested exhaust heat would focus on a very narrow band along a part of the tokamak wall known as the divertor plates. Dedicated to removing exhaust heat and particles from the burning plasma, the divertor is critical to a tokamak’s performance. But the new findings suggest that particles escaping the core plasma inside a tokamak collide with a larger area of the tokamak than once thought, greatly reducing the risk of damage. 

Environment Tags
Research Themes